Abstract
For the realization of more efficient environmental monitoring applications, e.g., precision
agriculture, the current technologies face many constraints in terms of observation precision
and real-time capabilities. Nanotechnology promises new solutions to address such limitations
through the fabrication of nano-scale devices which can be interconnected. The tiny
size of these devices offers entirely new features that cannot be observed at larger scales,
including the fine-grained detection of substances even at the molecular level. According
to the existing literature, the predicted communication channel for nano-devices will be in
the THz band, which has not been broadly studied yet. However, the limited research work
already indicates numerous challenges for THz communications, mainly in terms of signal
attenuation. These issues, which will be more prominent in the proximity of vegetation, can
drastically affect the transmission range and channel capacity. As it is evident in the current
literature, the traditional communication protocols cannot be deployed for nanonetworks,
since they do not consider the specific constraints of such networks.
Through this thesis, we propose a framework for THz nanonetwork communications in
vegetation environments, to address those challenges. This research work can be considered
as an initial step towards the realization of such types of communications.
The proposed framework is composed of different components, including a cross-layer
communication approach with specifications at the the physical and data link layers. It is also
comprised of generic models of plants as well as models for approximation of the probability
of success in transmissions. The performance of the proposed framework is analyzed based
on the proposed theoretical models and by considering various communication scenarios.
Original language | English |
---|---|
Awarding Institution | |
Supervisors/Advisors |
|
Publication status | Unpublished - 2016 |
Keywords
- Cross-Layer Communications Framework, THz Band Plant
- Monitoring Nanonetworks