TY - JOUR
T1 - Decompositions and eigenvectors of Riordan matrices
AU - Cheon, Gi Sang
AU - Cohen, Marshall M.
AU - Pantelidis, Nikolaos
N1 - Funding Information:
The author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2019R1A2C1007518, 2016R1A5A1008055).
Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - Riordan matrices are infinite lower triangular matrices determined by a pair of formal power series over the real or complex field. These matrices have been mainly studied as combinatorial objects with an emphasis placed on the algebraic or combinatorial structure. The present paper contributes to the linear algebraic discussion with an analysis of Riordan matrices by means of the interaction of the properties of formal power series with the linear algebra. Specifically, it is shown that if a Riordan matrix A is an n×n pseudo-involution then the singular values of A must come in reciprocal pairs. Moreover, we give a complete analysis of existence and nonexistence of the eigenvectors of Riordan matrices. This leads to a surprising partition of the group of Riordan matrices into three different types of eigenvectors. Finally, given a nonzero vector v, we investigate the Riordan matrices A that stabilize the vector v, i.e. Av=v.
AB - Riordan matrices are infinite lower triangular matrices determined by a pair of formal power series over the real or complex field. These matrices have been mainly studied as combinatorial objects with an emphasis placed on the algebraic or combinatorial structure. The present paper contributes to the linear algebraic discussion with an analysis of Riordan matrices by means of the interaction of the properties of formal power series with the linear algebra. Specifically, it is shown that if a Riordan matrix A is an n×n pseudo-involution then the singular values of A must come in reciprocal pairs. Moreover, we give a complete analysis of existence and nonexistence of the eigenvectors of Riordan matrices. This leads to a surprising partition of the group of Riordan matrices into three different types of eigenvectors. Finally, given a nonzero vector v, we investigate the Riordan matrices A that stabilize the vector v, i.e. Av=v.
KW - Eigenvectors of Riordan matrix
KW - Formal series of infinite order
KW - Stabilizers
UR - http://www.scopus.com/inward/record.url?scp=85125297443&partnerID=8YFLogxK
U2 - 10.1016/j.laa.2022.02.023
DO - 10.1016/j.laa.2022.02.023
M3 - Article
AN - SCOPUS:85125297443
SN - 0024-3795
VL - 642
SP - 118
EP - 138
JO - Linear Algebra and Its Applications
JF - Linear Algebra and Its Applications
ER -