TY - JOUR
T1 - Impact of intestinal microbiota on growth and feed efficiency in pigs
T2 - A review
AU - Gardiner, Gillian E.
AU - Metzler-Zebeli, Barbara U.
AU - Lawlor, Peadar G.
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/12
Y1 - 2020/12
N2 - This review summarises the evidence for a link between the porcine intestinal microbiota and growth and feed efficiency (FE), and suggests microbiota-targeted strategies to improve productivity. However, there are challenges in identifying reliable microbial predictors of host phenotype; environmental factors impact the microbe–host interplay, sequential differences along the intestine result in segment-specific FE-and growth-associated taxa/functionality, and it is often difficult to distinguish cause and effect. However, bacterial taxa involved in nutrient processing and energy harvest, and those with anti-inflammatory effects, are consistently linked with improved productivity. In particular, evidence is emerging for an association of Treponema and methanogens such as Methanobrevibacter in the small and large intestines and Lactobacillus in the large intestine with a leaner phenotype and/or improved FE. Bacterial carbohydrate and/or lipid metabolism pathways are also generally enriched in the large intestine of leaner pigs and/or those with better growth/FE. Possible microbial signalling routes linked to superior growth and FE include increased intestinal propionate production and reduced inflammatory response. In summary, the bacterial taxa and/or metabolic pathways identified here could be used as biomarkers for FE/growth in pigs, the taxa exploited as probiotics or the taxa/functionality manipulated via dietary/breeding strategies in order to improve productivity in pigs.
AB - This review summarises the evidence for a link between the porcine intestinal microbiota and growth and feed efficiency (FE), and suggests microbiota-targeted strategies to improve productivity. However, there are challenges in identifying reliable microbial predictors of host phenotype; environmental factors impact the microbe–host interplay, sequential differences along the intestine result in segment-specific FE-and growth-associated taxa/functionality, and it is often difficult to distinguish cause and effect. However, bacterial taxa involved in nutrient processing and energy harvest, and those with anti-inflammatory effects, are consistently linked with improved productivity. In particular, evidence is emerging for an association of Treponema and methanogens such as Methanobrevibacter in the small and large intestines and Lactobacillus in the large intestine with a leaner phenotype and/or improved FE. Bacterial carbohydrate and/or lipid metabolism pathways are also generally enriched in the large intestine of leaner pigs and/or those with better growth/FE. Possible microbial signalling routes linked to superior growth and FE include increased intestinal propionate production and reduced inflammatory response. In summary, the bacterial taxa and/or metabolic pathways identified here could be used as biomarkers for FE/growth in pigs, the taxa exploited as probiotics or the taxa/functionality manipulated via dietary/breeding strategies in order to improve productivity in pigs.
KW - Bacterial taxa
KW - Gut
KW - Intestine
KW - Microbial metabolite signalling
KW - Microbiome
KW - Mucosal immune response
KW - Productivity
KW - Swine
KW - Trait
UR - http://www.scopus.com/inward/record.url?scp=85096909847&partnerID=8YFLogxK
U2 - 10.3390/microorganisms8121886
DO - 10.3390/microorganisms8121886
M3 - Review article
AN - SCOPUS:85096909847
VL - 8
SP - 1
EP - 31
JO - Microorganisms
JF - Microorganisms
IS - 12
M1 - 1886
ER -