TY - JOUR
T1 - Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes
AU - McSwiney, Fionn T.
AU - Wardrop, Bruce
AU - Hyde, Parker N.
AU - Lafountain, Richard A.
AU - Volek, Jeff S.
AU - Doyle, Lorna
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2018/4
Y1 - 2018/4
N2 - Background Low-carbohydrate diets have recently grown in popularity among endurance athletes, yet little is known about the long-term (> 4 wk) performance implications of consuming a low-carbohydrate high fat ketogenic diet (LCKD) in well-trained athletes. Methods Twenty male endurance-trained athletes (age 33 ± 11 y, body mass 80 ± 11 kg; BMI 24.7 ± 3.1 kg/m2) who habitually consumed a carbohydrate-based diet, self-selected into a high-carbohydrate (HC) group (n = 11, %carbohydrate:protein:fat = 65:14:20), or a LCKD group (n = 9, 6:17:77). Both groups performed the same training intervention (endurance, strength and high intensity interval training (HIIT)). Prior to and following successful completion of 12-weeks of diet and training, participants had their body composition assessed, and completed a 100 km time trial (TT), six second (SS) sprint, and a critical power test (CPT). During post-intervention testing the HC group consumed 30–60 g/h carbohydrate, whereas the LCKD group consumed water, and electrolytes. Results The LCKD group experienced a significantly greater decrease in body mass (HC − 0.8 kg, LCKD − 5.9 kg; P = 0.006, effect size (ES): 0.338) and percentage body fat percentage (HC − 0.7%, LCKD − 5.2%; P = 0.008, ES: 0.346). Fasting serum beta-hydroxybutyrate (βHB) significantly increased from 0.1 at baseline to 0.5 mmol/L in the LCKD group (P = 0.011, ES: 0.403) in week 12. There was no significant change in performance of the 100 km TT between groups (HC − 1.13 min·s, LCKD − 4.07 min·s, P = 0.057, ES: 0.196). SS sprint peak power increased by 0.8 watts per kilogram bodyweight (w/kg) in the LCKD group, versus a − 0.1 w/kg reduction in the HC group (P = 0.025, ES: 0.263). CPT peak power decreased by − 0.7 w/kg in the HC group, and increased by 1.4 w/kg in the LCKD group (P = 0.047, ES: 0.212). Fat oxidation in the LCKD group was significantly greater throughout the 100 km TT. Conclusions Compared to a HC comparison group, a 12-week period of keto-adaptation and exercise training, enhanced body composition, fat oxidation during exercise, and specific measures of performance relevant to competitive endurance athletes.
AB - Background Low-carbohydrate diets have recently grown in popularity among endurance athletes, yet little is known about the long-term (> 4 wk) performance implications of consuming a low-carbohydrate high fat ketogenic diet (LCKD) in well-trained athletes. Methods Twenty male endurance-trained athletes (age 33 ± 11 y, body mass 80 ± 11 kg; BMI 24.7 ± 3.1 kg/m2) who habitually consumed a carbohydrate-based diet, self-selected into a high-carbohydrate (HC) group (n = 11, %carbohydrate:protein:fat = 65:14:20), or a LCKD group (n = 9, 6:17:77). Both groups performed the same training intervention (endurance, strength and high intensity interval training (HIIT)). Prior to and following successful completion of 12-weeks of diet and training, participants had their body composition assessed, and completed a 100 km time trial (TT), six second (SS) sprint, and a critical power test (CPT). During post-intervention testing the HC group consumed 30–60 g/h carbohydrate, whereas the LCKD group consumed water, and electrolytes. Results The LCKD group experienced a significantly greater decrease in body mass (HC − 0.8 kg, LCKD − 5.9 kg; P = 0.006, effect size (ES): 0.338) and percentage body fat percentage (HC − 0.7%, LCKD − 5.2%; P = 0.008, ES: 0.346). Fasting serum beta-hydroxybutyrate (βHB) significantly increased from 0.1 at baseline to 0.5 mmol/L in the LCKD group (P = 0.011, ES: 0.403) in week 12. There was no significant change in performance of the 100 km TT between groups (HC − 1.13 min·s, LCKD − 4.07 min·s, P = 0.057, ES: 0.196). SS sprint peak power increased by 0.8 watts per kilogram bodyweight (w/kg) in the LCKD group, versus a − 0.1 w/kg reduction in the HC group (P = 0.025, ES: 0.263). CPT peak power decreased by − 0.7 w/kg in the HC group, and increased by 1.4 w/kg in the LCKD group (P = 0.047, ES: 0.212). Fat oxidation in the LCKD group was significantly greater throughout the 100 km TT. Conclusions Compared to a HC comparison group, a 12-week period of keto-adaptation and exercise training, enhanced body composition, fat oxidation during exercise, and specific measures of performance relevant to competitive endurance athletes.
KW - Body composition
KW - Endurance
KW - High-carbohydrate
KW - Ketogenic
KW - Performance
UR - http://www.scopus.com/inward/record.url?scp=85036568277&partnerID=8YFLogxK
U2 - 10.1016/j.metabol.2017.10.010
DO - 10.1016/j.metabol.2017.10.010
M3 - Article
C2 - 29108901
AN - SCOPUS:85036568277
SN - 0026-0495
VL - 81
SP - 25
EP - 34
JO - Metabolism: Clinical and Experimental
JF - Metabolism: Clinical and Experimental
ER -