Scaling and Placing Distributed Services on Vehicle Clusters in Urban Environments

Kanika Sharma, Bernard Butler, Brendan Jennings

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Many vehicles spend a significant amount of time in urban traffic congestion. Due to the evolution of autonomous vehicles, driver assistance systems, and in-vehicle entertainment, these vehicles have plentiful computational and communication capacity. How can we deploy data collection and processing tasks on these (slowly) moving vehicles to productively use any spare resources To answer this question, we study the efficient placement of distributed services on a moving vehicle cluster. We present a macroscopic flow model for an intersection in Dublin, Ireland, using real vehicle density data. We show that such aggregate flows are highly predictable, making it viable to deploy services harnessing vehicles' sensing capabilities. After studying the feasibility of using these vehicle clusters as infrastructure, we introduce a detailed mathematical specification for a task-based, distributed service placement model. The distributed service scales according to the resource requirements and is robust to the changes caused by the mobility of the cluster. We formulate this as a constrained optimization problem, with the objective of minimizing overall processing and communication costs. Our results show that jointly scaling tasks and finding a mobility-aware, optimal placement results in reduced processing and communication costs compared to the two schemes in the literature.

Original languageEnglish
Pages (from-to)1
Number of pages1
JournalIEEE Transactions on Services Computing
Publication statusAccepted/In press - 2022


  • Cloud computing
  • Computational modeling
  • Edge computing
  • Flexible service models
  • Predictive models
  • Resource Allocation
  • Resource management
  • Sensors
  • Service Placement
  • Task analysis
  • Vehicular Cloud Computing
  • Vehicular Fog Computing


Dive into the research topics of 'Scaling and Placing Distributed Services on Vehicle Clusters in Urban Environments'. Together they form a unique fingerprint.

Cite this